Faithful to the Original: Fact Aware Neural Abstractive Summarization

نویسندگان

  • Ziqiang Cao
  • Furu Wei
  • Wenjie Li
  • Sujian Li
چکیده

Unlike extractive summarization, abstractive summarization has to fuse different parts of the source text, which inclines to create fake facts. Our preliminary study reveals nearly 30% of the outputs from a state-of-the-art neural summarization system suffer from this problem. While previous abstractive summarization approaches usually focus on the improvement of informativeness, we argue that faithfulness is also a vital prerequisite for a practical abstractive summarization system. To avoid generating fake facts in a summary, we leverage open information extraction and dependency parse technologies to extract actual fact descriptions from the source text. The dual-attention sequence-to-sequence framework is then proposed to force the generation conditioned on both the source text and the extracted fact descriptions. Experiments on the Gigaword benchmark dataset demonstrate that our model can greatly reduce fake summaries by 80%. Notably, the fact descriptions also bring significant improvement on informativeness since they often condense the meaning of the source text.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Abstractive Text Summarization

Abstractive text summarization is a complex task whose goal is to generate a concise version of a text without necessarily reusing the sentences from the original source, but still preserving the meaning and the key contents. We address this issue by modeling the problem as a sequence to sequence learning and exploiting Recurrent Neural Networks (RNNs). This work is a discussion about our ongoi...

متن کامل

Abstractive Document Summarization with a Graph-Based Attentional Neural Model

Abstractive summarization is the ultimate goal of document summarization research, but previously it is less investigated due to the immaturity of text generation techniques. Recently impressive progress has been made to abstractive sentence summarization using neural models. Unfortunately, attempts on abstractive document summarization are still in a primitive stage, and the evaluation results...

متن کامل

Diverse Beam Search for Increased Novelty in Abstractive Summarization

Text summarization condenses a text to a shorter version while retaining the important informations. Abstractive summarization is a recent development that generates new phrases, rather than simply copying or rephrasing sentences within the original text. Recently neural sequence-to-sequence models have achieved good results in the field of abstractive summarization, which opens new possibiliti...

متن کامل

Controlling Decoding for More Abstractive Summaries with Copy-Based Networks

Attention-based neural abstractive summarization systems equipped with copy mechanisms have shown promising results. Despite this success, it has been noticed that such a system generates a summary by mostly, if not entirely, copying over phrases, sentences, and sometimes multiple consecutive sentences from an input paragraph, effectively performing extractive summarization. In this paper, we v...

متن کامل

Improving Neural Abstractive Text Summarization with Prior Knowledge (Position Paper)

Abstractive text summarization is a complex task whose goal is to generate a concise version of a text without necessarily reusing the sentences from the original source, but still preserving the meaning and the key contents. In this position paper we address this issue by modeling the problem as a sequence to sequence learning and exploiting Recurrent Neural Networks (RNN). Moreover, we discus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04434  شماره 

صفحات  -

تاریخ انتشار 2017